Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5428, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443427

RESUMO

Dietary interventions can reduce progression to type 2 diabetes mellitus (T2DM) in people with non-diabetic hyperglycaemia. In this study we aimed to determine the impact of a DNA-personalised nutrition intervention in people with non-diabetic hyperglycaemia over 26 weeks. ASPIRE-DNA was a pilot study. Participants were randomised into three arms to receive either (i) Control arm: standard care (NICE guidelines) (n = 51), (ii) Intervention arm: DNA-personalised dietary advice (n = 50), or (iii) Exploratory arm: DNA-personalised dietary advice via a self-guided app and wearable device (n = 46). The primary outcome was the difference in fasting plasma glucose (FPG) between the Control and Intervention arms after 6 weeks. 180 people were recruited, of whom 148 people were randomised, mean age of 59 years (SD = 11), 69% of whom were female. There was no significant difference in the FPG change between the Control and Intervention arms at 6 weeks (- 0.13 mmol/L (95% CI [- 0.37, 0.11]), p = 0.29), however, we found that a DNA-personalised dietary intervention led to a significant reduction of FPG at 26 weeks in the Intervention arm when compared to standard care (- 0.019 (SD = 0.008), p = 0.01), as did the Exploratory arm (- 0.021 (SD = 0.008), p = 0.006). HbA1c at 26 weeks was significantly reduced in the Intervention arm when compared to standard care (- 0.038 (SD = 0.018), p = 0.04). There was some evidence suggesting prevention of progression to T2DM across the groups that received a DNA-based intervention (p = 0.06). Personalisation of dietary advice based on DNA did not result in glucose changes within the first 6 weeks but was associated with significant reduction of FPG and HbA1c at 26 weeks when compared to standard care. The DNA-based diet was effective regardless of intervention type, though results should be interpreted with caution due to the low sample size. These findings suggest that DNA-based dietary guidance is an effective intervention compared to standard care, but there is still a minimum timeframe of adherence to the intervention before changes in clinical outcomes become apparent.Trial Registration: www.clinicaltrials.gov.uk Ref: NCT03702465.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/prevenção & controle , DNA , Glucose , Hemoglobinas Glicadas , Projetos Piloto , Idoso
2.
Sci Rep ; 12(1): 12702, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882885

RESUMO

Psilocybin is a hallucinogenic compound that is showing promise in the ability to treat neurological conditions such as depression and post-traumatic stress disorder. There have been several investigations into the neural correlates of psilocybin administration using non-invasive methods, however, there has yet to be an invasive study of the mechanism of action in awake rodents. Using multi-unit extracellular recordings, we recorded local field potential and spiking activity from populations of neurons in the anterior cingulate cortex of awake mice during the administration of psilocybin (2 mg/kg). The power of low frequency bands in the local field potential was found to significantly decrease in response to psilocybin administration, whilst gamma band activity trended towards an increase. The population firing rate was found to increase overall, with just under half of individual neurons showing a significant increase. Psilocybin significantly decreased the level of phase modulation of cells with each neural frequency band except high-gamma oscillations, consistent with a desynchronization of cortical populations. Furthermore, bursting behavior was altered in a subset of cells, with both positive and negative changes in the rate of bursting. Neurons that increased their burst firing following psilocybin administration were highly likely to transition from a phase-modulated to a phase unmodulated state. Taken together, psilocybin reduces low frequency oscillatory power, increases overall firing rates and desynchronizes local neural activity. These findings are consistent with dissolution of the default mode network under psilocybin, and may be indicative of disruption of top-down processing in the acute psychedelic state.


Assuntos
Giro do Cíngulo , Psilocibina , Animais , Camundongos , Neurônios/fisiologia , Psilocibina/farmacologia , Roedores , Vigília
3.
Front Neurosci ; 13: 808, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481864

RESUMO

Closed-loop or intelligent neuromodulation allows adjustable, personalized neuromodulation which usually incorporates the recording of a biomarker, followed by implementation of an algorithm which decides the timing (when?) and strength (how much?) of stimulation. Closed-loop neuromodulation has been shown to have greater benefits compared to open-loop neuromodulation, particularly for therapeutic applications such as pharmacoresistant epilepsy, movement disorders and potentially for psychological disorders such as depression or drug addiction. However, an important aspect of the technique is selection of an appropriate, preferably neural biomarker. Neurochemical sensing can provide high resolution biomarker monitoring for various neurological disorders as well as offer deeper insight into neurological mechanisms. The chemicals of interest being measured, could be ions such as potassium (K+), sodium (Na+), calcium (Ca2+), chloride (Cl-), hydrogen (H+) or neurotransmitters such as dopamine, serotonin and glutamate. This review focusses on the different building blocks necessary for a neurochemical, closed-loop neuromodulation system including biomarkers, sensors and data processing algorithms. Furthermore, it also highlights the merits and drawbacks of using this biomarker modality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...